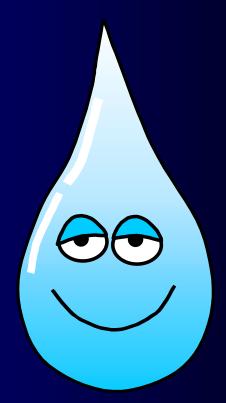

# Graywater Systems and Use

Charles P. Gerba
Department of Soil, Water,
and Environmental Science
University of Arizona






#### What is Graywater?

#### Water collected from:

- \* Bathroom sinks
- **\*** Kitchen sink
- \* Bathtubs and showers
- Washing machine



# State of Arizona Standards for Graywater Reuse for Irrigation

Fecal coliforms

Geometric mean of 25, single

sample not to exceed 75

Chlorine residual

20 mg/L

Samples required

Series of 5 in one calendar month;

one sample

series per year



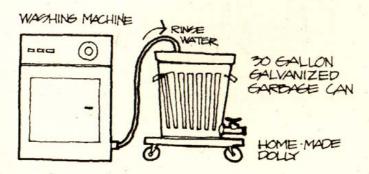
The Casa del Agua

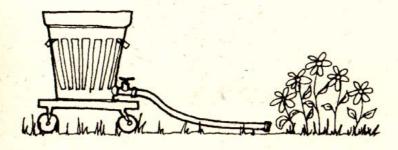


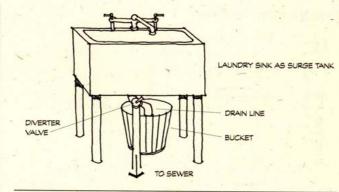
Graywater is piped from the household drains...



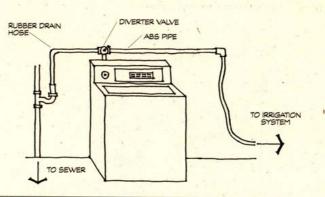
and goes into a holding tank.



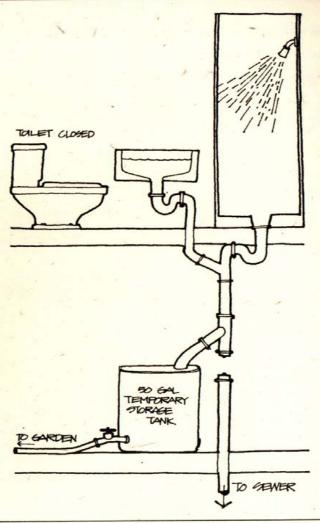


It is reused to water the landscaping.


#### SAMPLE SYSTEMS

The following graphics are provided to convey the wide variety of systems that can be designed for retrofitting a home and to help you design and install your own system.


#### **Gravity System**








#### **Bucket Graywater System**



Hose Attachment Graywater System



Graywater Collection from Second Story

# Graywater Use In Pima County, Arizona

- 20,000 to 30,000 households may be using graywater
- These households involve 50,000 to 80,000 persons (Tucson, AZ population of 900,000)

### Sources of Graywater/Pima County, AZ

 Bathroom tubs / showers - 15%



• Bathroom sinks - 5%



### Sources of Graywater/Pima County, AZ

Kitchen sinks - 10%

Clothes washer - 66%

Other - 4%



# Occurrence of Coliforms and Fecal Coliforms in Wash Water After Laundering

|                    | Coliform Arithmetic Average |                    | Fecal Coliform Arithmetic Average |                    |
|--------------------|-----------------------------|--------------------|-----------------------------------|--------------------|
| Type of Clothing   | Washer<br>Load              | Per<br>Item        | Washer<br>Load                    | Per<br>Item        |
| Underwear          | 5.2 x 10 <sup>6</sup>       | $4.5 \times 10^5$  | $5.6 \times 10^5$                 | $7.4 \times 10^4$  |
| Jeans              | 7.2 x 10 <sup>5</sup>       | $1.07 \times 10^5$ | $1.5 \times 10^4 \ 2$             | $2.24 \times 10^3$ |
| <b>Bath Towels</b> | s1.2 x 10 <sup>6</sup>      | $1.77 \times 10^3$ | $< 1.6 \times 10^4$               | ND                 |

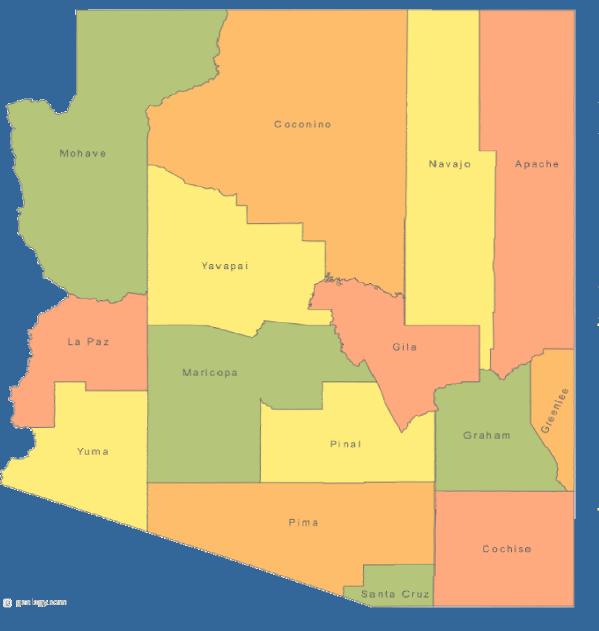
# How Graywater is used in Pima County, AZ



Ornamental trees –
 32%

• Shrubs - 19%

• Grass - 14%


# Factors that Motivate People to Use Graywater

- Environmental sensitivity
- Water conservation ethic
- Desire to reduce water bill
- Desire to reduce sewer bill or prolong life of septic tank

# Factors that Increase the Likelihood of Graywater Use

- Older homes
- Lower value homes
- Manufactured homes
- Lower income levels
- Septic tanks

#### Survey of Microbial Quality of Graywater



Location: Pima County, AZ Number of Homes: 12

Length of Study:

12 months

### Microbial Parameters Evaluated

- Coliforms
- Fecal coliforms
- E. coli
- Enterococci
- Giardia cysts
- Cryptosporidium oocysts





# Household Demographics

- 7 Adults only
- 4 With children (age 0 19)

# Study of Household Graywater – Application Methods



• Drip – 3 households

• Flood - 8 households

# Sources of Graywater in Study Households

| Washing machine only                      | 5 |
|-------------------------------------------|---|
| Washing machine + kitchen sink            | 3 |
| Kitchen sink only                         | 1 |
| Washing machine + kitchen sink + bathroom | 3 |

# Geometric Averages of Fecal Coliforms

| Household<br>Demographic | Fecal Coliforms per<br>Gram of Irrigated Soil |
|--------------------------|-----------------------------------------------|
| Adults only              | 1,260                                         |
| With children            | 32                                            |

# Geometric Averages of Fecal Coliforms

| Source of Graywater                | Graywater* | Irrigated Soil** |
|------------------------------------|------------|------------------|
| Kitchen sink                       | 88,400     | 1,300            |
| Washing machine and/obsthroom sink | or 822     | 27               |

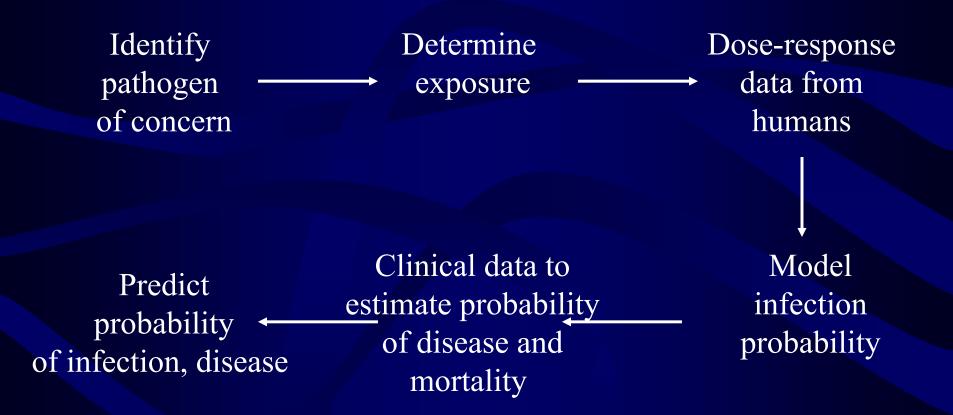
<sup>\*</sup> per 100 ml

<sup>\*\*</sup> per gram

# Geometric Averages of Fecal Coliforms

Type of Application

Fecal Coliforms per Gram of Soil


Drip

 $11 \pm 22$ 

Flood

 $\overline{469 \pm 716,000}$ 

## Quantitative Microbial Risk Assessment



# Risk Assessment Assumptions

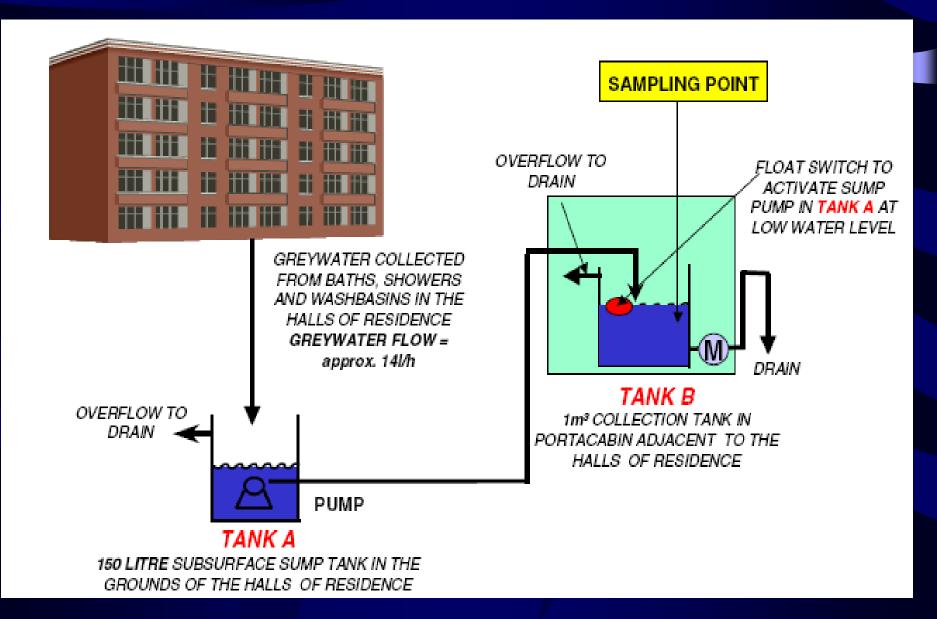
- All fecal coliforms are E. coli 0157:H7
- $P = 1 (1 + N/\beta)^{-\alpha}$
- $\alpha = 0.1705$   $\beta = 1.61 \times 10^6$
- Child 6 ingests 200 mg.
- Child over 6 ingests 100 mg.
- Acceptable risk of infection 1:10,000/year

| Source of       | Risk of Infection from One Time Exposure |                           |  |
|-----------------|------------------------------------------|---------------------------|--|
| Graywater       | Child under 6                            | Child over 6              |  |
| Kitchen         | 4.1 x 10 <sup>-2</sup> to                | 2.2 x 10 <sup>-2</sup> to |  |
|                 | $4.3 \times 10^{-4}$                     | $2.1 \times 10^{-4}$      |  |
| Sink or washing | $1.2 \times 10^{-5}$ to                  | 10-6 to 10-8              |  |
| machine         | 7.5 x 10 <sup>-8</sup>                   |                           |  |

| Source of               | Risk of Infection from 360 days of Exposure |                                      |  |
|-------------------------|---------------------------------------------|--------------------------------------|--|
| Graywater               | Child under 6                               | Child over 6                         |  |
| Kitchen                 | 1.4 x 10 <sup>-1</sup>                      | 7.5 x 10 <sup>-2</sup>               |  |
| Sink or washing machine | 10 <sup>-4</sup> to 10 <sup>-5</sup>        | 10 <sup>-4</sup> to 10 <sup>-5</sup> |  |

# Conclusions Pima County Study

- Levels of fecal coliforms in graywater are influence by
  - source of graywater
  - children in household
- Levels of fecal bacteria in soil are
  - greater in graywater irrigated soil
  - influenced by method of application
- Animals in household had no effect
- No Giardia or Cryptosporidium detected


# Arizona Dept. of Environmental Quality Residential Graywater Reuse Rules (effective January 2001)

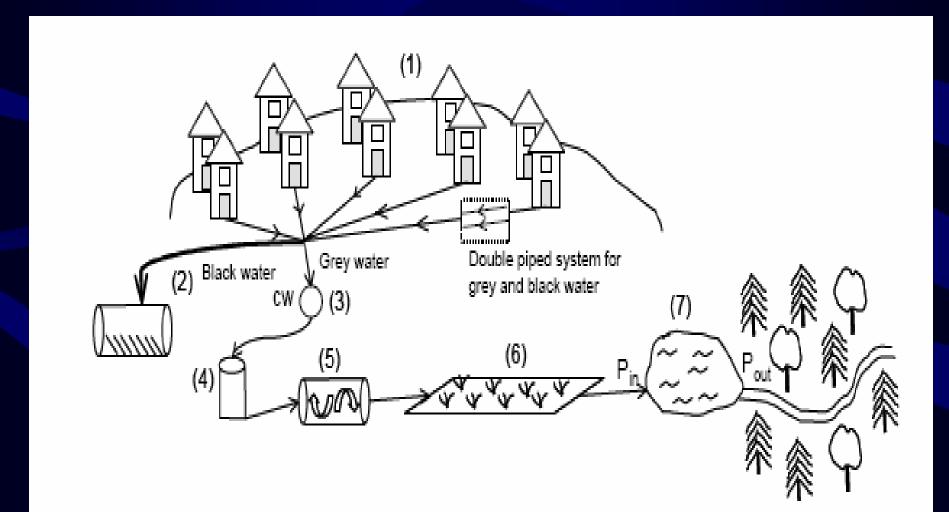
#### Type 1 Permit

- Allows private residential direct graywater reuse of less than 400 gallons per day
- Must not leave property
- No irrigation of food crops
- Minimization of standing water
- No spray irrigation
- No kitchen source
- No irrigation of surface if diapers are washed

#### Graywater Study in the United Kingdom –

Environ. Mont. Assessment - 2007




### Graywater Study in the United Kingdom

Environ. Mont. Assessment - 2007

- Giardia 63% of samples Range 0.5-1.5/liter
- Salmonella 13% of samples
- Not detected *Cryptosporidium*, *Campylobacter*, enteroviruses, *E. coli* 0157:H7

# Graywater Study Sweden

Water Research 2003



# Graywater Study Sweden

Water Research 2003

#### Risk Assessment Assumptions

- Accidental ingestion of one mL of irrigation water for 26 days of irrigation
- used likely concentration of pathogens based on excretion rates in sewage
- Monitoring study showed that 0.04 grams feces per person per day

# Graywater Study Sweden Yearly Risks (26 days of exposure) from Irrigation

- Rotavirus =  $10^{-0.2}$
- Salmonella =  $10^{-5.0}$
- Giardia =  $10^{-4.5}$
- Safe level of exposure is considered 10-4
- Conclusions: viruses present the greatest risk; Salmonella and Giardia did not present a significant risk

# Graywater - Observations

- Fecal coliforms, coliforms and *E. coli* can grow in graywater thus they can not be used as indicator of pathogen risk
- Greatest risks are from viruses
- Risks are reduced by
  - No surface ponding
  - No lawn irrigation

# Disease Risks are Reduced by

- Prevention of surface ponding
- No lawn irrigation
- Restriction to washing machine, bath, and bathroom sink
- No off site runoff
- Irrigation confined to ornamental plants and trees
- Limited to individual residences
- Limited to rural areas